УТВЕРЖДЕНЫ: приказом МАУК «ЦБС» от 08.02.2016 № 15-од (приложение 8)

СОГЛАСОВАНО:

Руководитель представительного органа Муниципального автономного учреждения культуры «Централизованная библиотечная система»

УТВЕРЖДАЮ:

Директор Муниципального автономного учреждения культуры «Централизованная библиотечная система»

т.А. Белохвостикова « 08 » февраля 2016 год

инструкция № 8

по охране труда для неэлектротехнического персонала (1 группа по электробезопасности) в Муниципальном автономном учреждении культуры «Централизованная библиотечная система»

1. Общие требования безопасности

- 1.1. Группа 1 по электробезопасности распространяется на неэлектротехнический персонал, выполняющий работы, при которых может возникнуть опасность поражения электрическим током.
- 1.2. Присвоение группы 1 по электробезопасности осуществляется в виде проведения инструктажа, который должен завершаться проверкой знаний в форме устного опроса и (при необходимости) проверкой приобретенных навыков безопасных способов работы или оказания первой помощи при поражении электрическим током.
- 1.3. Присвоение группы 1 оформляется в специальном журнале с подписью проверяемого и проверяющего. Выдача удостоверения о проверке знаний при этом не требуется.
- 1.4. Проверка и присвоение 1 группы проводится уполномоченным лицом из обслуживающей специализированной организации с группой по электробезопасности не ниже 3.
- 1.5. Присвоение 1 группы по электробезопасности проводится с периодичностью один раз в год.
- 1.6. Лица с 1 группой по электробезопасности должны иметь представление об опасности электрического тока, о мерах безопасности при работе с электрооборудованием, знать и практически оказывать первую доврачебную помощь при электротравме.
- 1.7. Ответственное лицо по вопросам охраны труда обязано вновь принятого работника обеспечить проведением инструктажа для присвоения 1 группы.

- 1.8. В случае если работник, не прошел инструктаж на I группу по электробезопасности, он отстраняется от самостоятельной работы. Работник освобождается только от самостоятельной работы, а не от работы вообще.
- 1.9. Перечень профессий (должностей), требующих присвоения I группы по электробезопасности утверждается руководителем Учреждения. К таким профессиям (должностям) относится работники, занятые:
- работой с применением ПЭВМ, мультимедийного оборудования и оргтехники и т.п.;
- работой в помещениях, где имеется электрооборудование;
- уборкой служебных и производственных помещений Учреждения.
- 1.10. Ответственность за своевременную проверку знаний у лиц с группой по электробезопасности группы I несет руководитель учреждения.
- 1.11. Неэлектротехнический персонал обязан:
- соблюдать режим труда и отдыха, установленный законодательством, правилами внутреннего трудового распорядка Учреждения, трудовую дисциплину, выполнять требования правил и норм охраны труда;
- выполнять требования пожарной безопасности, знать порядок действий при пожаре, уметь применять первичные средства пожаротушения;
- о неисправностях оборудования сообщать непосредственному руководителю или лицам, осуществляющим техническое обслуживание данного оборудования.
- 1.12. Не допускается выполнять работу, находясь в состоянии алкогольного опьянения либо в состоянии, вызванном употреблением наркотических средств, психотропных или токсических веществ, а также распивать спиртные напитки, употреблять наркотические средства, психотропные или токсические вещества на рабочем месте или в рабочее время.
- 1.13. Настоящая инструкция является обязательной для неэлектротехнического персонала, работающего в Учреждении. Лица, нарушившие требования данной инструкции, несут ответственность согласно Правилам внутреннего распорядка, законодательства РФ.

2. Требования охраны труда перед началом работы

- 2.1. Перед началом работы с электроприборами, электроинструментом и оборудованием работник должен выполнить следующие требования безопасности:
- изучить руководство по эксплуатации;
- убедиться в отсутствии видимых повреждений оборудования, питающих и соединительных кабелей и проводов;
- проверить надежность присоединения к оборудованию видимых заземляющих проводников, наличие и надежность крепления заземляющих контактов вилок и розеток штепсельных разъемов.

- 2.2. Внешними признаками неисправности электроустройств являются:
- наличие трещин и сколов у корпусов приборов и пусковых устройств, ненадежное их крепление на основах;
- наличие оголенных токоведущих частей;
- ненадежное скрепление элементов электроустройств (плохое соединение половинок штепсельной вилки, ослабленное крепление штырей) могущие вызвать короткое замыкание;
- потертость, подпалы, изломы на подводящих шнурах, особенно в месте входа шнура в колодку штепсельной вилки и прибор;
- неплотная посадка штепсельной вилки в розетку;
- появление дыма, специфического запаха горящей резины или пластмассы, перегрев и искрение.
- 2.3. При обнаружении неисправности оборудования, наличии видимых повреждений питающих и соединительных кабелей и проводов, разъемов штепсельных соединений, отсутствии или неисправности заземления оборудования приступать к работе запрещается.
- 2.4. При появлении неисправностей электроустройство следует обесточить, а переносные приборы выключить, отсоединить от сети и сообщить непосредственному руководителю.
- 2.5. В случае выявления нарушений требований охраны труда, которые могут привести к несчастному случаю или пожару, работа приостанавливается до устранения этого нарушения, о чем письменно (устно, с последующим оформлением в письменном виде) сообщается вышестоящему руководителю.

3. Требования безопасности при выполнении работы и эксплуатации электрооборудования

- 3.1. Оборудование с внешним питанием в зависимости от способа защиты от поражения электрическим током подразделяются на IV класса:
- оборудование І класса безопасности в дополнении к основной изоляции имеет заземляющий контакт вилки сетевого шнура или зажим на корпусе с постоянным присоединением к сети, служащим для присоединения доступных для прикосновения металлических частей к внешнему заземляющему устройству; приборы ОІ класса безопасности в дополнение к основной изоляции имеют зажим для присоединения доступных для прикосновения металлических частей к внешнему заземляющему устройству, вилка сетевого шнура не имеет заземляющего контакта;
- электрооборудование II класса безопасности (с двойной или усиленной изоляцией, имеет, кроме основной изоляции, дополнительную, у ввода сетевого шнура в корпус знак) и не требует защитного заземления или зануления;
- приборы III класса питаются от изолированного источника тока с переменным напряжением не более 24В или постоянным напряжением не более 50В и не

имеют цепей с более высоким напряжением, не нуждаются в защитном заземлении или занулении.

- 3.2. Если степень защиты (класс) не указана в маркировке на оборудовании или в инструкциях по эксплуатации (паспорте) или они утеряны, то такие приборы должны быть проверены инженерно-техническим персоналом обслуживающей организации для определения пригодности к дальнейшей безопасной эксплуатации. Запрещается допускать использования таких приборов (например, холодильники), если неизвестна степень их защиты.
- 3.3. Для защиты от поражения электрическим током все доступные для прикосновения металлические части оборудования I и 0I классов должны быть заземлены или занулены.
- 3.4. Непрерывность цепи между зажимом защитного заземления на электроустановке и заземляющей клеммой на щите или шине защитного заземления должна проверяться осмотром персонала в начале каждого рабочего дня. Запрещается подача сетевого питания на электроустановку при нарушении непрерывности цепи защитного заземления.
- 3.5. В помещении, где эксплуатируется электрооборудование, радиаторы и металлические трубы отопления, водопровода, канализационные и газовые системы (электрощитовая, подвальное помещение) должны быть закрыты деревянными решетками или другими диэлектрическими заградительными приспособлениями, а полы должны быть не токопроводящими.
- 3.6. При выполнении работы необходимо соблюдать следующие меры безопасности:
- соблюдать требования эксплуатации оборудования;
- выполнять только ту работу, которая поручена;
- не допускать сторонних лиц к эксплуатации вверенного оборудования;
- не касаться кабелей и проводов оборудования, включенного в электросеть;
- не работать электроинструментом, у которого истек срок периодической проверки, инвентарный номер и дата следующей проверки должны быть указаны на корпусе электроинструмента;
- не работать электроинструментом, не защищенным от воздействия капель или брызг, не имеющим отличительных знаков (капля в треугольнике или две капли), в условиях воздействия капель и брызг, а также на открытых площадках во время снега или дождя;
- не натягивать и не перекручивать кабели, шнуры электропитания, не подвергать их механической нагрузке и не ставить на них груз;
- не снимать с оборудования до его отключения от электросети съемные детали и панели;
- не допускать непосредственного соприкосновения проводов и кабелей с горячими, сырыми, замасленными поверхностями или предметами;
- не переносить и не передвигать включенные в электросеть приборы и оборудование;
- отключать оборудование при исчезновении напряжения в электросети и при перерыве в работе;

- не производить ремонт электрической части электрооборудования самостоятельно;
- не вытирать пыль и не производить уборку при включенном в электросеть оборудовании.
- 3.7. При обнаружении неисправности в процессе эксплуатации электрооборудования, персонал должен немедленно отключить неисправный прибор от сети, доложить об этом непосредственному руководителю.
- 3.8. При выполнении работы работникам запрещается:
- включать электрооборудование в сеть при поврежденной изоляции шнура питания и корпуса штепсельной вилки, а также других дефектах, при которых возможно прикосновение персонала к частям, находящимся под напряжением;
- отключать электрооборудование путем выдергивания штепсельной вилки из розетки за шнур, усилие должно быть приложено к корпусу вилки;
- перевозить тележки по проводам и кабелям, наступать на электрокабели или шнуры электрооборудования, переносить работающие электроустройства или оставлять их без надзора включенными в сеть, бросать штепсельные вилки на пол;
- использовать электрооборудование, не ознакомившись предварительно с принципом его работы и правилами безопасной эксплуатации (паспорт или инструкция);
- проверять работоспособность электрооборудования в неприспособленных для эксплуатации помещениях с токопроводящими полами, сырых, не позволяющих заземлить доступные металлические части (для 0I и I классов);
- самостоятельно устранять неисправности электрооборудования, ремонт осуществляет работник требуемой квалификации, либо специалистом обслуживающей организации, и только после отключения прибора от сети;
- применять помещениях электроплитки c открытыми спиралями, электрообогреватели без защитных ограждающих устройств другие электроприемники, напряжением, имеющие части под доступные ДЛЯ прикосновения;
- класть провода переносных ламп и электрифицированного оборудования на влажные поверхности, горячие предметы, в места, где они могут подвергнуться трению, скручиванию, натяжению. Протирать мокрыми тряпками электроустановки, включенные в сеть. Обмывать стены там, где установлены электроприборы, проложены кабели и провода. Производить уборку помещений с помощью поливочного шланга вблизи распределительного устройства и электродвигателей, установленных на полу;
- работать с неисправным оборудованием, возобновлять работы можно только после устранения неисправности и наличии соответствующей записи в журнале технического обслуживания лицом, отвечающем за исправность электрооборудования;
- при подключении стационарного оборудования использование переходников и удлинителей (кроме специальных стабилизирующих устройств) для чего в помещениях должно предусматриваться достаточное число штепсельных розеток.
- 3.9. В случае внезапного ухудшения здоровья необходимо прекратить работу, выключить оборудование, сообщить об этом руководителю и при необходимости обратиться к врачу.

4. Требования охраны труда по окончании работы

- 4.1. После окончания работ все оборудование и механизмы переводятся в положение, исключающее возможность их запуска сторонними лицами.
- 4.2. Электропитание приборов, оборудования и механизмов отключается.
- 4.3. После отключения оборудования от сети производится его чистка и уборка, осматривается и приводится в порядок рабочее место.
- 4.4. Все замечания, возникшие в процессе работы оборудования, сообщаются непосредственному руководителю и заносятся в журнал контроля состояния и условий охраны труда.

5. Воздействие электрического тока на человеческий организм

- 5.1. Электрический ток оказывает на человеческий организм биологическое, электролитическое и термическое воздействие.
- 5.2. **Биологическое воздействие** выражается в раздражении и возбуждении живых клеток организма, что приводит к непроизвольным судорожным сокращениям мышц, нарушению нервной системы, органов дыхания и кровообращения. При этом могут наблюдаться обмороки, потеря сознания, расстройство речи, судороги, нарушение дыхания (вплоть до остановки). При тяжелой электротравме смерть может наступить мгновенно.
- 5.3. Электролитическое воздействие проявляется в разложении плазмы крови и других органических жидкостей, что может привести к нарушению их физико-химического состава.
- 5.4. **Термическое воздействие** сопровождается ожогами участков тела и перегревом отдельных внутренних органов, вызывая в них различные функциональные расстройства. Возникающая электрическая дуга вызывает местные повреждения тканей и органов человека.
- 5.5. По степени тяжести электротравмы классифицируются по четырем степеням:

I степень - судорожное сокращение мышц без потери сознания;

II степень - судорожное сокращение мышц и потеря сознания;

III степень - потеря сознания и нарушение функций сердечной деятельности и

дыхания;

IV степень - клиническая смерть.

5.6. Ожоги подразделяются на четыре степени:

I степень - покраснение кожи;

III степень - образование пузырей;

III степень - обугливание кожи;

IV степень - обугливание подкожной клетчатки, мышц, сосудов и т.п.

5.7. Виды поражения электрическим током:

- электрические ожоги, подразделяются на токовые (контактные), дуговые и комбинированные;
- электрические метки (знаки) специфические поражения кожи электрическим током;
- металлизация кожи проникновение в верхние слои кожи мельчайших частиц металла (сварочные работы), расплавившегося под воздействием электродуги;
- механические повреждения следствие резких непроизвольных судорожных сокращений мышц под действием тока или падения с высоты при освобождении от действия электрического тока;
- электроофтальмия поражение органов зрения (электродуга);
- электрический шок своеобразная тяжелая нерворефлекторная реакция организма, сопровождающаяся серьезными расстройствами кровообращения, дыхания, обмена веществ;
- электрический удар возбуждение живых тканей организма электрическим током, сопровождающееся непроизвольным судорожным сокращением мышц.
- 5.8. Тяжесть электротравм зависит от силы тока, проходящего через человека, рода тока, времени воздействия, физиологического состояния организма (индивидуальные свойства) и условий внешней среды.
- 5.9. Сила тока. От ее величины зависит общая реакция организма. Предельно допустимая величина переменного тока 0,3 мА. При увеличении силы тока до 0,6-1,6 мА человек начинает ощущать его воздействие, происходит легкое дрожание рук. При силе тока 8-10 мА сокращаются мышцы руки (в которой зажат проводник), человек не в состоянии освободиться от действия тока. Значения переменного тока 50-200 мА и более вызывают фибрилляцию сердца, что может привести к его остановке.
- 5.10. Род тока. Предельно допустимое значение постоянного тока в 3-4 раза выше допустимого значения переменного, но это при напряжении не выше 260-300В. При больших величинах он более опасен для человека ввиду его электролитического воздействия.
- 5.11. Сопротивление тела человека. Тело человека проводит электричество. Электризация происходит тогда, когда существует разность потенциалов между двумя точками в данном организме. Важно подчеркнуть, что опасность несчастных случаев с электричеством возникает не от простого контакта с проводом, находящимся под напряжением, а от одновременного контакта с проводом под напряжением и другим предметом при разнице потенциалов. Сопротивление тела человека слагается из трех составляющих: сопротивлений кожи (в местах контактов), внутренних органов и емкости человеческого кожного покрова. Основную величину сопротивления составляет поверхностный кожный покров (толщиной до 0,2 мм). При увлажнении и повреждении кожи в местах контакта с токоведущими частями ее сопротивление резко падает.
- 5.12. Сопротивление кожного покрова сильно снижается при увеличении плотности и площади соприкосновения с токоведущими частями. При напряжении 200-300В наступает электрический прорыв верхнего слоя кожи.

- 5.13. Продолжительность воздействия тока. Тяжесть поражения зависит от продолжительности воздействия электрического тока. Время прохождения электрического тока имеет решающее значение для определения степени телесного повреждения. Например, морские рыбы (электрические угри скаты) производят чрезвычайно неприятные разряды, способные вызвать потерю сознания. Тем не менее, несмотря на напряжение в 600В, силу тока 1А сопротивление примерно в 600 Ом, эти рыбы не способны вызвать смертельный шок, поскольку продолжительность разряда слишком мала порядка нескольких десятков микросекунд.
- 5.14. При длительном воздействии электрического тока снижается сопротивление кожи (из-за потовыделения) в местах контактов, повышается вероятность прохождения тока в особенно опасный период сердечного цикла. Человек может выдержать смертельно опасное значение переменного тока 100 мА, если продолжительность воздействия тока не превысит 0,5 с.
- 5.15. Путь электрического тока через тело человека. Наиболее опасно, когда ток проходит через жизненно важные органы сердце, легкие, головной мозг.
- 5.16. При поражении человека по пути «правая рука ноги» через сердце человека проходит 6,7 % общей величины электрического тока. При пути «нога нога» через сердце человека проходит только 0,4 % общей величины тока.
- 5.17. С медицинской точки зрения прохождение тока через тело является основным травмирующим фактором.
- 5.18. Частота электрического тока. Принятая в энергетике частота электрического тока (50 Гц) представляет большую опасность возникновения судорог и фибрилляции желудочков. Фибрилляция не является мускульной реакцией, она вызывается повторяющейся стимуляцией с максимальной чувствительностью при 10 Гц. Поэтому переменный ток (с частотой 50 Гц) считается в три-пять раз более опасным, чем постоянный ток, он воздействует на сердечную деятельность человека.
- 5.19. Под индивидуальными особенностями человека (или физиологическим состоянием) подразумевают: болезни кожи, сердечно-сосудистой системы, легких, нервные болезни и все, что увеличивает темп работы сердца (усталость, возбуждение, испуг, алкоголь, жажда), способствует увеличению тяжести поражения током.
- 5.20. Условия внешней среды и сами помещения, в которых находится электроустановки, являются факторами влияющими на тяжесть поражения электрическим током.
- 5.21. Помещения делятся на три категории:
- помещения без повышенной опасности;
- помещения с повышенной опасностью;
- особо опасные помещения.

- 5.22. Помещения с повышенной опасностью характеризуются наличием в них хотя бы одного из следующих условий:
- токопроводящая пыль, сажа;
- сырость относительная влажность воздуха длительно превышает 75%;
- высокая температура воздуха длительно превышает 35°C;
- токопроводящий пол металлический, железобетонный, каменный, земляной;
- возможность одновременного прикосновения к имеющим соединение с землей металлическим элементам технологического оборудования или металлическим конструкциям здания и металлическим корпусам оборудования.
- 5.23. Особо опасные помещения характеризуются наличием:
- высокой влажности воздуха близко к 100%, «капает с потолка»;
- химически активной среды, разрушающе действующей на изоляцию электрооборудования;
- одновременным наличием двух или более признаков помещений с повышенной опасностью.
- 5.24. Помещения без повышенной опасности, т.е. в которых отсутствуют все указанные выше условия.
- 5.25. Категории безопасных помещений, где используются электроустановки, не существует. Опасность поражения электрическим током в любых помещениях существует всегда!

6. Причины поражения электрическим током

- 6.1. Поражение электрическим током возникает:
- при прикосновении человека к не заизолированным токоведущим частям электроустановки;
- при прикосновении к металлическим частям электроустановок, оказавшимся под напряжением в результате нарушения изоляции при неисправном заземляющем устройстве;
- при неисправности электроустройств (оборудования, приборов, пусковых устройств, проводов, заземления);
- при применении в помещениях с повышенной и особой опасностью переносных ламп и электроинструментов более высокого напряжения, чем установлено правилами; при нарушении правил и инструкций по эксплуатации электрооборудования.

Электроустановки представляют для человека большую опасность, и органы чувств человека не могут на расстоянии обнаружить наличие напряжения на оборудовании так, как электрический ток не имеет запаха, цвета, бесшумен. Неспособность организма человека обнаруживать ток до начала его действия приводит к тому, что работник не осознает реально имеющейся опасности и не принимает своевременно защитных мер. Опасность поражения электрическим током характерна еще и тем, что пострадавший не может оказать себе помощь, а при неумелом оказании помощи может пострадать и тот, кто оказывает помощь.

Приблизительно половина несчастных случаев, связанных с поражением электрическим током, происходит во время профессиональной деятельности пострадавших. По некоторым данным электротравмы составляют около 30 процентов общего числа всех травм на производстве и, как правило, имеют тяжелые последствия. По частоте смертельных исходов электротравматизм в 15-16 раз превосходит другие виды травм.

7. Первая помощь пострадавшим от действия электрического тока

7.1. Быстрое отключение от действия электрического тока это первое действие для спасения пострадавшего.

Рис. 1. Освобождение пострадавшего от действия электротока путем отключения электроустановки

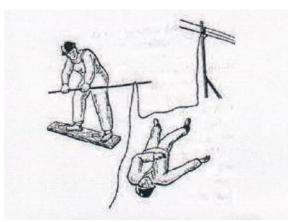


Рис. 2. Средства личной защиты при освобождении от действия электрического тока в электроустановках напряжением до 1000В

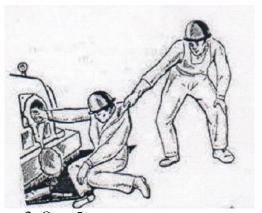


Рис. 3. Освобождение пострадавшего от действия части, находящейся под напряжением до 1000B

Рис. 4. Освобождение пострадавшего от токоведущей части электрического тока

- 7.2. При поражении электрическим током необходимо быстро освободить пострадавшего действия OT тока немедленно отключить часть TV электроустановки, которой касается пострадавший (рис. 1). Когда невозможно отключить электроустановку, следует принять иные меры по освобождению пострадавшего, соблюдая надлежащую предосторожность.
- 7.3. Для отделения пострадавшего от токоведущих частей или провода напряжением до 1000В следует воспользоваться канатом, палкой, доской (рис. 2) или какимлибо другим сухим предметом, не проводящим электрический ток. Можно оттянуть пострадавшего за одежду (если она сухая и отстает от тела), избегая

- при этом прикосновения к окружающим металлическим предметам и частям тела пострадавшего, не прикрытым одеждой (рис. 3).
- 7.4. Для изоляции своих рук следует воспользоваться диэлектрическими перчатками (рис. 4) или обмотать руку шарфом, надеть на нее суконную фуражку, натянуть на руку рукав пиджака или пальто, накинуть на пострадавшего сухую материю. Действовать рекомендуется одной рукой, другая должна находиться за спиной.
- 7.5. На линии электропередачи, когда невозможно быстро отключить ее на пунктах питания, можно произвести замыкание проводов накоротко, набросив на них гибкий неизолированный провод достаточного сечения, заземленный за металлическую опору, заземляющий спуск и т.д. Для удобства на свободный конец проводника прикрепляют груз. Если пострадавший касается одного провода, то достаточно заземлить только один провод.
- 7.6. Все, о чем говорилось выше, относится к установкам напряжением до 1000В. Для отделения пострадавшего от токоведущих частей, находящихся под напряжением выше 1000В, следует применять диэлектрические боты, перчатки и изолирующие штанги, рассчитанные на соответствующее напряжение. Такие действия может производить только обученный персонал.
- 7.7. После освобождения пострадавшего от действия электрического тока или атмосферного электричества (удара молнии) необходимо провести полный объем реанимации. Пострадавшему обеспечить полный покой, не разрешать двигаться или продолжать работу, так как возможно ухудшение состояния из-за ожогов внутренних органов и тканей по ходу протекания электрического тока. Последствия внутренних ожогов могут проявиться в течение первых суток или ближайшей недели.
- 7.8. Во всех случаях поражения электрическим током необходимо вызвать врача, независимо от состояния пострадавшего.
- 7.9. Меры доврачебной помощи зависят от состояния, в котором находится пострадавший после освобождения его от действия тока:
- если пострадавший в сознании, но до этого был в обмороке, или находился в бессознательном состоянии, но с сохранившимися устойчивыми дыханием и пульсом, его следует уложить на подстилку из одежды, расстегнуть одежду, стесняющую дыхание, создать приток свежего воздуха, растереть и согреть тело, удалить из помещения лишних людей и до прихода врача создать полный покой;
- если пострадавший находящемуся в бессознательном состоянии, то ему необходимо давать нюхать нашатырный спирт, опрыскивать лицо холодной водой, а когда он придет в сознание, следует дать ему 15-20 капель настойки валерьяны и горячего чая;
- если пострадавший дышит редко и судорожно, но у него прощупывается пульс, необходимо сразу же делать ему искусственное дыхание до появления ровного самостоятельного дыхания или до прибытия врача;
- если у пострадавшего отсутствует дыхание (определяется подъемом грудной клетки) и пульс, нельзя считать его мертвым, так как запас кислорода в организме сохраняется 4-8 минут, необходимо немедленно начать делать искусственное дыхание и наружный (непрямой) массаж сердца.

7.10. Переносить пострадавшего в другое место следует только в тех случаях, когда ему или оказывающему помощь продолжает угрожать опасность или когда оказание помощи на месте невозможно.

Правила определения признаков клинической смерти: Чтобы сделать вывод о наступлении клинической смерти у неподвижно лежащего пострадавшего, достаточно убедиться в отсутствии сознания и пульса на сонной артерии. Не следует терять время на определение сознания путем ожидания ответов на вопросы: «Все ли у тебя в порядке? Можно ли приступить к оказанию помощи?». Надавливание на шею в области сонной артерии является сильным болевым раздражителем. Не следует терять время на определение признаков дыхания. Они трудноуловимы, и на их определение с помощью ворсинок ватки, зеркальца или наблюдения за движением грудной клетки можно потерять неоправданно много времени. Самостоятельное дыхание без пульса на сонной артерии продолжается не более минуты, а вдох искусственного дыхания взрослому человеку ни при каких обстоятельствах не может причинить вреда. Если подтвердились признаки клинической смерти. Быстро освободить грудную клетку от одежды и нанести удар по грудине. При его неэффективности приступить к сердечно-легочной реанимации. Правила определения пульса на сонной артерии. Расположить четыре пальца на шее пострадавшего и убедиться в отсутствии пульса на сонной артерии. Определять пульс следует не менее 10 секунд.

Правила освобождения грудной клетки от одежды для проведения реанимации: Расстегнуть пуговицы рубашки и освободить грудную клетку. Джемпер, свитер или водолазку приподнять и сдвинуть к шее. Майку, футболку или любое нательное белье из тонкой ткани можно не снимать. Но прежде чем наносить удар по грудине или приступать к непрямому массажу сердца, следует убедиться, что под тканью нет нательного крестика или кулона. Поясной ремень обязательно расстегнуть или ослабить. Известны случаи, когда во время проведения непрямого массажа сердца печень повреждалась о край жесткого ремня.

Правила нанесения удара по грудине: Убедиться в отсутствии пульса на сонной артерии. Прикрыть двумя пальцами мечевидный отросток. Нанести удар кулаком выше своих пальцев, прикрывающих мечевидный отросток. После удара проверить пульс на сонной артерии. В случае отсутствия пульса сделать еще одну-две попытки. Нельзя наносить удар при наличии пульса на сонной артерии. Нельзя наносить удар по мечевидному отростку. Внимание! В случае клинической смерти, особенно после поражения электрическим током, первое с чего необходимо начать помощь, нанести удар по грудине пострадавшего. Если удар нанесен в течение первой минуты после остановки сердца, то вероятность оживления превышает 50%. Если после нескольких ударов не появился пульс на сонной артерии, то приступить к непрямому массажу сердца.

Правила проведения непрямого массажа сердца и безвентиляционной реанимации: Расположить основание правой ладони выше мечевидного отростка так, чтобы большой палец был направлен на подбородок или живот пострадавшего. Левую ладонь расположить на ладони правой руки. Переместить центр тяжести на грудину пострадавшего и проводить непрямой массаж сердца прямыми руками. Продавливать грудную клетку не менее чем на 3-5 см с частотой не реже 60 раз в минуту. Каждое следующее надавливание начинать только после того, как грудная клетка вернется в исходное положение. Оптимальное соотношение надавливаний на грудную клетку и вдохов искусственной вентиляции легких - 30:2, независимо от количества участников реанимации. По возможности приложить холод к голове.

Внимание! При каждом надавливании на грудную клетку происходит активный выдох, а при ее возвращении в исходное положение - пассивный вдох. Когда выделения изо рта пострадавшего представляют угрозу для здоровья спасающего, можно ограничиться проведением непрямого массажа сердца, т.е. безвентиляционным вариантом реанимации. Чтобы непрямой массаж сердца был эффективным, его необходимо проводить на ровной жесткой поверхности.

Правила проведения вдоха искусственной вентиляции легких (ИВЛ) способом «изо рта в рот». Правой рукой обхватить подбородок так, чтобы пальцы, расположенные на нижней челюсти и щеках пострадавшего, смогли разжать и раздвинуть его губы. Левой рукой зажать нос. Запрокинуть голову пострадавшего и удерживать ее в таком положении до окончания проведения вдоха. Плотно прижаться губами к губам пострадавшего и сделать в него максимальный выдох. Если во время проведения вдоха ИВЛ пальцы правой руки почувствуют раздувание щек, можно сделать безошибочный вывод о неэффективности попытки вдоха. Если первая попытка вдоха ИВЛ оказалась неудачной, следует увеличить угол запрокидывания головы и сделать повторную попытку. Если вторая попытка вдоха ИВЛ оказалась неудачной, то необходимо сделать 30 надавливаний на грудину, повернуть пострадавшего на живот, очистить пальцами ротовую полость и только затем сделать вдох ИВЛ. Внимание! Нет необходимости разжимать челюсти пострадавшего, так как зубы не препятствуют прохождению воздуха. Достаточно разжать только губы. Первая помощь должна быть оказана в первые четыре-пять минут после поражения электрическим током. Применяя современные методы оживления в первые две минуты после наступления клинической смерти, можно спасти до 92 % пострадавших, а в течение от трех до четырех минут - только 50 %. При поражении электрическим током пострадавший в любом случае должен обратиться к врачу. Через несколько часов могут возникнуть опасные последствия (падение сердечной деятельности, вызванное нарушением функции сердца из-за электрического тока). Периферические сосудистые нарушения могут обнаруживаться через неделю после травмы. Отмечены случаи, когда спустя несколько месяцев развивалась катаракта.

Разработал:

Главный специалист МАУК «ЦБС»

Muller

Н.В. Крючкова